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STUDY TO DEVELOP GRADIOMETER TECHNIQUES

1. INTRODUCTION

There are three moving base gravity gradiometers currently under
development, The instruments are being developed at Hughes Research
Labs [Ref, 1], the Bell Acrospace Corp, [2], and the Charles Stark
Draper Lab, |3, ‘4]. The design goal for each of the sensors is 1 Edtvds,
Furthermore, 0,1 EOtvds (E) accuracy should be fcasible from an orbiting
gravity gradiometer [57. The group of instruments includes sensors
designed specifically to measure the gravity gradient, as well as sensors,
which utilize existing accelerometers to provide a gradient estimate,
The Hughes and Bell instruments rotate, thus modulating the information,
This rotation transfers the gravity gradient signal to a higher fre—
quency, quieter part of the spectrum, and can separate the signal from
some sources of instrument bias, The Draper Lab sensor measures the
gradient signal at zero frequency and uses a sophisticated flotation
suspension system to isolate the sensing element frow ervors induced
by rotation and jitter, A system of at least three instruments of any
one type is required in order to provide a complete gravity gradient
tensor estimate, Often times, however, it is possible to extract all

the information that is required from a single one of these instruments,

The primary objectivesof this paper, oriented toward the use of a
workable gravity gradiometer as a sensing element in several applica-

tions, are given below:

1) To develop models for gravity gradient anomalies and gravity

anomalies,

2) To evaluate several methods of on-line instrument bias estima-

tion,

3) To determine the performance of a gradiometer in mapping the

earth's gravity ficld,

4) To assess inertial navigation systems augmented with a gravity

gradiometer,

-




The work under this contract, and the work under a separate con—

tract (Goddard SFC — NAS 5-21960) to evalyate the performance

of a geodesy mission with orbiting gradiometers have some overlap,
especially in the groundwork arecas of instrument performance and capa-—
bility, and gravity models, As such, we hope it will be valuable to

supply some results from work performed under that contract in this

Final Report,




g -*;J/

" White Section

W Bulf Section [
“BhARNOUNCED V]
WSTUF ICATION

-"“mm"ml.lllu" Chapter 11

TEY i e« B GRAVITY AND GRAVITY GRADIENT MODELS

A

In order to evaluate the capability of gravity gradiometers, or
systems in which the gravity gradiometer i1s an essential component,
some model of the type of i1nputs is required, Several of the models
are:

-1

1) tesseral harmonic models using Kaula's rule {/;

s . =
2) tesseral harmonic models using Allan's rule [ 8]

’

3) point mass and line mass models

’
4)  experimentally determined second-order random process models .

Once a given model i1s chosen, the gravitational potential, force,
and gradient can be ascertained, The choice of which model is to be
used 1n a given implementation depends on the dynamic range of interest
for a given system (which is in turn dependent on the system's speed
relative to the ecarth), This can vary substantially, from fixed basec
application, to ship speed, airplane speed, and finally, orbital speed,
The various models also result in different degrees of complexity,
This, too, must be considered for any mechanization involving gravity

gradiometers,

This chapter contains the expressions for the gravity forces and

gradients, and their correlation based on various gravity models,

A,  TESSERAL HARMONIC MODELS

The most general expression of an arbitrary function over the
surface of a sphere that satisfies the potential equation is in terms
of tesseral harmonics, The tesseral harmonic expansion of the earth's
gravitational potential is

{

um‘ t RD 2 e
v(r,p,\) mettl = F 2(—\— P, (sin @) [C{m cos m\
r l {m=ir {m

(1)

+ §(m sin m\,1 ‘ v




where  (r,®,\) is the position of a test point in terms of the spherical

coordinates, radius, latitude, and longitude; ”m = GM@; R(p radius
of the earth; F(m(x) are normalized associated Legendre polynomials,
and E'm and gim are normalized tesseral harmonic coefficients, which
give the amount of cach harmonic present; the perturbation potential

due to a particular harmonic is simply

Lt R. { _ -
Y -2 (Jﬁ) P, (sin ) J 2)
{m r r im fm
where
T : SELRC
fm tm L

and in writing (2), the phase information is lost.

= '
Fstimates of the magnitudes of the J ot s are given by Kaula [7]

{

and Allan [8], Kaula's familiar rule of thumb for 3€m is
-5
= J2 10 ,
J ~ & (3)
{m €2

while Allan's more complicated formula is

-10 (+3/2
r 412.2 X 10 0.03)' "

Yem Gl
(2¢ + 1) .20 + 3

Although, different in form, both formulas agree quite closely over
huge ranges of the subscript ({, and with measured values of the
tesseral harmonic coefficients,

With estimates of the magnitudes of the J(m in (3) and (4), it
becomes possible to estimate the magnitude of the perturbation potential

v{m' and hence of the force (?) and gradient (?) perturbations, since

il




T v (5a)
T
and
=
i éz " (5b)
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If we further assume that the phases of the harmonics are random,
it becomes possible to obtain closed-form approximate expressions for the
variance of the perturbation forces, the variance of the perturbation
gravity gradient, and the covariance of the perturbation forces and

gradients due to the tesseral harmonics,

The total variance of the force is computed for a representative

force component (fr) via Kaula's rule, 1t is given by

2 .2 . 2 252 -
0 ¢ E(tr) 3 (tr Y i (m sec) (6)
; o
where fr~ is the radial force perturbation due to the {th harmonic,
1
The extra ¢ in (6) is due to the fact there are { distinct harmonics
(m 1 to ¢) for a particular v

fr is obtained as the radial derivative

1 R *
& @\ 3 = (7a)
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¢
since
R
o )
2 = Bl
45 ¥

where g is the gravitational acceleration at the surface of the earth,

] =2
Squaring (7), inserting it into (6), using that Pim(sin Q‘)|av 1
S

by definition, and using Kaula's rule for jfm we obtain
.
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An identical approach leads to closed-form expression for the grad-

ients, There

Q f

2 3 = —
r n (2(—‘) P, (sin @) J,
Pr X {m im
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eventually, using Kaula's rule,
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Substitution of Allan's rule (4) into (9) gives a slightly more

cumbersome series to sum, The results are

~10 R \2{+4
2 12.2x10 2 »
o T ) (0,93 —“—) (1)
8(0,93) {22
: 2
so o 1,28 x 10 © g —=
JL = %
R _\2
where X (0.93 l—‘) .




Similarly

2

SO

where

10

R 321
I | 2 i3
(0.93)'n Z i (0.9., ’——) (12)
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The results of Eqgs., (8), (10), (11), and (12) are plotted in Fig, 1,

Tt shows the standard deviation of the force perturbations and gradient

perturbations at various aititudes, Figure 1 also shows that as the test

point approaches the earth's surface, the standard deviation of the

gradient using Kaula's

rule blows up, a phenomena that physically does not

occur, Although Kaula's rule is in common use, it evidently does not

attenuate the high frequency components rapidly enough to produce a finite

standard deviation

at the surface, Allan's rule does provide for a more

rapid attenuation of the high frequency components, due to the presence

of the (0,93)( term in (4), and does result in finite force and gradient

variances,

One useful feature of the closed~form solutions of the standard de-

viations is the ability to determine what amount of variance is due to

different portions of the spectrum, A particularly simple example 1is

obtained from the force components in (11), The analytical expression

for O¢ due to harmonics above some degree &k 1is easily found to be

-5 SR —
1,28 x 10 g v& te/1 - x where again x = 0,93(Rh/r)2. Near the sur-
te

face of the earth,

then, the percent of variance contribution due to

harmonic degree greater than or equal to Kk is given as
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2 .
where x ~ (0,93), In order to account for only 50% of the noise, a

model of fifth degree (~ 30 coefficients!) is required, for 75% of

the noise 10th (~110 coefficients) degree, etc, The gradient components
attenuate even less rvapidly requiring an even higher order model., This
certainly proves that an improved tesseral harmonic model of the earth
1s not the way to go in order to improve navigator accuracy due to the

high degree of the model required to give even modest improvement,

In order to compare results of other models to this model, the correl-

ation coefficients for ' and g, and for I' - [  and g were
O ® e o o

(
1 Ht

computed on the basis of the tesseral harmonic model with random phases,

These correlation coefficients are given below near the earth's surface

E g..)
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B. POINT MASS AND LINE MASS MODELS

The point mass and line mass models approximate local gravity
anomalies much better than the tesseral harmonic model which has primary

use in describing global features,

A simplified analysis of a point disturbance begins with the assump-—
tion of a point mass with mass My Hy Gmd' and a local 2-D x, vy

coordinate frame as is shown in Fig, 2,

FIG, 2 POINT MASS MODEL




at a point (x, y) is simply

The disturbance potential due to Hy
\'¢ - /v (TVe Gl y,‘s, Expressions for the forces and gradients arve

easily obtained by taking the respective partial derivatives,

{ ux { By
X 3 y 3 '
- y y
(13)
. : 2
- =5 B¥ Jp=x + y ) ; o _ bpXxy
L XX vy O 2 Xy 5
X r
B e B
where r NS = ¥

The correlation between the four gquantities in (13) can be found
by assuming each of them is an andependent measurement . and that the
measurcements are obtained along a prescribed path in the x, y plane,
For simplicity, the path chosen here is the path y constant, and X
proceeds from - to + & at a constant rate (the path an airplane might

follow), The information matrix is then given by

N
I\.

K & : Bt B e =1 o T Jds 7
IR i o o LT Dyt 143
XX vy

] .
and the covariance matrix P is simply [, Normalized off-diagonal
elements of P pilve the correlation coefficients, A typical integra-

tion its shown below

© @ “ /2 2 2.
1 fodx ‘ X dx J" y tan 6(y N‘Cznlm)
11 ! : ST : 6 G
oo —o (X +y) =n/2 y sec @
n/2 . s
1 L ’ tan @ vns'lﬂ.l(‘« XL (l)
11 3 3 '8 °

y we v
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Evaluating every element of 1

~ -
l 1 ) ) n
o e ( ( - —y —
38 Ty
\ y
n 3
0 — - 0
d K
v
1 2 (1)
% 1
O — (4]
14
v
n 3 9 D
- — 0 0 —
48 5 33
L : . o
Normaltsing 1, and reordering rows and columns
- -
1
i
1 2 1 O QO {
! x
'
1
-2 5 ' Q ] 21"
1 XV
1 . PSR . L)
O O : 3 4 {
' v
i .
1
0 Q0 ' 1 i -
v XX\ b 4
{ 2 £ =D
\ Xy y XX Xy
From (1) it is tound that "‘ is highly correlated with f\ (and
Xy 3
with nothing else) with corvelation coefficient 2 (6 O, 890, and also
that 0 e b ts highly corrvelated with (and with nothing else)
Yy o h
with correlation coetticient -4 \‘Bl - 0,875,

is neavly perfect correlation has particular signiticance for
pravity pradiometer system tmplementat tons, In most cases, the gravity
pradiometer 15 used as a sensor to provide force perturbations due to
pravity anomalies that the accelerometors cannot provide and that contan
too much high frequency information for an a priovt carth pravity model
fo approximate, Instead of proceeding altong the path of integrating the
pradient information to pive the torces (which leads to problems if the

pradiometer measurement contatns a bias), the correlation of the forces

- )




with the gradients gives a way of proceeding directly from the gradients
to the forces without augmenting the states of the system, In fact,

from (16) we obtain

-
x 1
3
y Y 16
L L e¥ 5 (yy
# 361 5 3 ’
vy 16 8

and

f ~ - 0,43y =
PO 1_‘..\,)

where 'y is a correlation height or a mean height of the vehicle above
the disturbances, A simple gain adjustment is all that is neceded then

to provide the force perturbations from the gradient information,

B. LINE MASS MODELS

The line mass model is another possible alternate to locally model-
ing gravitational perturbations, To determine if line mass models or
point mass models result in better performance will require surveying
duta to discover if local gravity perturbations are more accurately
modeled with line masses or point masses, Surprisingly, the use of

point masses vs line masses produces relatively minor differences, The

lLine mass model is shown in Fig, 3,
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FIG, 3 LINE MASS MODEL

The disturbance potential V is simply

-m »” Q0 “
vV - -2 s _Z—P—g’_‘j:-Z—( Li(:_—l (18)
0 ( 0

2
X 4y +27)
where now 1 is a mass per unit length, (Note that V in (18) is

independent of z,) Expressions for the force and gradient expression are

again obtained

~13~




¢ 2 Sw pux dz
3
0 P

«©
(. 9 ‘ i qdz
¥ 0
(19)
&
- —3xy zZ
Bt ,\ _xuﬂ
xy 0 r
a 4
S N (3y - 3x2)pdz
e =F 2 g
XX yy 0 r5

The correlation between the various elements is obtained by the
procedure described in (14) and (15), The identical substitutions are
made here as in the point mass model, the integrations carried out, and
the results are that hxy is correlated with fx (and with nothing else)

with correlation coefficient 1‘\5- 0.71 and that . - T is

XX vy
correlated with fv (and with nothing else) with corrolﬂ(toﬁ.cncfficivn(
- I/VE‘ -0,71, Aithough the correlation is not as strong as with the
point mass models, it is still quite high, Perhaps it is appropriate

in the final model, to actually use a correlation coefficient between

the values given by line mass models and point mass models, Again,

scale heights can be derived to relate directly the gradient perturba-

tions with the force perturbations,




An obvious advantage of these correlation models over dynamic wodels
of the earth's gravity gradient perturbations, deflections of the vertical,
and perturbation force components, is the simplicity, A dynamic model
involves earth surveying to "fit" parameters in the model, which may
themselves vary substantially over different regions of the earth,

An added advantage is that the correlation models do not involve "aug-

menting the state' of the system, as do the dynamic models,




Chapter IIIL
BIAS ESTIMATION

Regardless of the eventual use of the gravity gradiometer, some type ‘
of signal processing will be required to minimize the effects of one of

the largest gravity gradiometer errors: an unknown instrument bias,

As will be discussed in Chapter V, a gradiometer bias has the same
effect as a gyroscope drift when used in an inertial navigator, i.e,,
they both prodnce unbounded position errors with increasing time, When
the gradiometer is used as the sensor to perform geodesy experiments

from orbit, the gradiometer bias produces a bias in the estimate of the

dominant term of the earth's gravity field,

This Chapter contains a study of several attempts to eliminate the

gravity gradiometer bias error,

One greatly simplified model of the bias estimation problem is
given below, A single (rotating) gradiometer supplies two pieces of
information of the gravity gradient at a point, the difference of two
principal elements of the gravity gradient tensor and one diagonal com—

ponent, For example, K

5 ° *3a1 = %y

(20)

! g T Sym

A set of three such gradiometers pointing in orthogonal directions |

along with Laplace's constraint equation (that the sum of the diagonal

elements equal zero) is sufficient to determine the gravity gradient at

a point; 1i,e,, the problem below:

o

PRECEDING FAGE blLANK




Even if random noise

squares estimate for

11

12

22

23

33

13

11

is invertible, and hence solvable for

invertible without the constraint equation z

in terms of

% = (HTH)"

with covariance

the first six equations in (21), it is possible to obtain a least-

is inserted into each of

in terms of

i
and the variance of the estimate error P = (H R 1H)

an "exact' measurement though, either infinitesimal values for the

corresponding element of R

or else the matrix inversion lemma [10] may be used,
sion lemma can yield the improved covariance matrix
is the easily computed covariance matrix which

does not include the beneficial effects of the exact constraint equation,

The formula relating P to P'

- R a)

must be used and a limit process applies
The matrix inver-

P from the covar-

P o= P @R P

reflects the constraint equation structure that




The advantage of the matrix inversion lemma procedure is that it

completely avoids the limiting processes mentioned earlier,

Now consider the problem of augmenting the state vector with con-

stant but unknown biases, 1 bias per gradiometer, Now

1 11 22 1
79 *12 Ry
%3 Xop T X33+ Py
%4 *23 * B
X
= B fe (23)
15 x33 - xll + b3 b
‘6 *13 * By
17 xll + x22 + x33 = 0

and although the sum of the biases b1 4 b2 + b3 is obtainable (from

ZI + z2 + 11 - 17), it is 1mpossible to obtain any other combination of

the biases (in particular, the individual biases) and, therefore, it is

impossible to sclve for x,

The only useful results from (23) are obtained if there is some
a priori estimate of the biases, In this case, the usual Kalman filter
techniques will allow for estimates of x to be obtained from noisy
measurements, however the conditioning of the problem is of course de-—

pendent on the initial accuracy of b, If I0 is the initial informa-

tion on the augmented state (P0 = IB ), then the update equations are
simply

~ ~ -1 T =1

'
X, = X5+ (Il) H' R "z
(23)
I o4 HUR M
1 0

where H' is the measurement matrix for the augmented state vector,

-19-




and R the covariance of the measurement accuracy,

The advantage of the initial information, 1 is evident in the

oF
T -1
second cquation of (23), Whereas H' R H' is not invertible, the sum
T -1
l“ + H'" R H' 1s invertible and hence the inverses appearing in the estim—

ate update equation are valid,

More sophisticated schemes for estimating the biases make use of
dynamic models of the system, as opposed to the model i1n which both the
gradient components and the biases were constants, Of course, since an
a prior: model of either the measurement or the state presumes additional
information is available, 1t should be expected that better results could

be obtained at the expense of additional complexity,

Two additional bias estimation schemes will be discussed, The first
makes use of the fact that the bias is fixed 1n the instrument frame, while
what the gradiometer measures will generally be fixed in an inertial frame,
Rotating the spin axis of the gradiometer should then distinguish between
the gradient components and the bias terms, The second method again
distinguishes between the gradient components and the bias terms but now,
the mechanism is via a model of the gradient perturbations, This is where

much of the material from Ch, I can be used,

Beginning first with the rotation scheme, an expression for ?, the

gradient tensor is

— -
™
i Tiz Tis
? % Tz Toa Tog
% I® |5y

L 13 23 33

Assuming the gravity gradiometer spin axis is rotated about the 1 axis

T
a4l
-

-20-




where

1 0
T 0 cos (wt)
0 =sin(wt)

and is the rotation frequency,

68

Then a single gradiometer, capable of measuring (say, without loss of

0

sin(ut)

cos (wt)

generality) the Pll - I"22 and r12 components would output
2 2
11 v'_‘ll - ("22 cos wt + 2',"23 sin wt cos wt + FBB sin wt)
b, + v,
il 1
z i cos wt r sin wt + b, + Vv
2 12 s 2 V2
where hl and b, are biases, and v1 and v2 are random noise, Now
X
% H |=-—-
b
and H 1s time varying, In fact
2 2 ) o
z, 1 —cos wt =sin wt 0 0 2sin wt 1 0 (Tll vy
xcos wt
o+
‘ - T22 v
z, 0 0 0 cos wt sin wt 0 O 1 2
- ™
"3
z, 1 1 1 0 0 0 0 0 .




Again we have the constraint equation, Z. Fll +

e | & = A'Al‘
Fag + Tg3 = 0. Note

that for ¢t 0, the time—varying H in (24) agrees with the H 1n
€23).

The standard test for observability can be performed on the matrix H

in (24) to determine the maximal rank of the matrix

r“i
H

9 = H ;

e
It turns out that the maximal rank of @ is 7, so one mode is still

not observable, Additional algebra yields the result that the mode

b -T /'3 B
1 "l is not observable, but that 2 b1 + 111
this says 1s that 1t is still not possible to distinguish between 711 and

b, This result is easily explainable since the gradiometer spin axis

is observable, What

never has a vertical component with the single axis rotation scheme we
have considered here, However, if a two axis rotation scheme where the
spin axis of the gradiometer spans all directions, all the parameters are
observable, and hence the gradient components and individual biases are

obtainable from =z,

A problem with the continuous rotation schemes yet to be discussed
1s the introduction of a gradient field due to the kinematics of the r.ta-

tion itself, The vector formula for this induced gradient field 1is

d o 5 > R 2
? = gﬁ'[m x(w x r)] we = I, (25)
W
In two dimensions the gradient field reduces to simply mz, If the spin

axis rotates as slowly as 21 50 sec, the required accuracy of this
rotation rate to obtain full potential of the fixed instrument accuracy

! -9
is ~ 1 part in 10 ! Sinee this accuracy is not feasible, the contin-

uous rotation schemes are ruled out,




Still, some use can be made of the preceding analysis, The fact that
all the states and biases are observable with the continuous two axes
rotation scheme means that with a sufficient number of discrete measure-—
ment points, the same information will be available, This can be accom—
plished in several ways, One scheme is to '"calibrate'" the gravity gradio—
meter at a fixed position, in several orientations to obtain the bias, If
the bias 1s truly constant the unit could then be used at new locations
with the predetermined value of the bias, A second scheme is to simply
repeat measurements with a moving base gravity gradiometer with the 1nstru-
ment oriented in different directions, For example, in a surveying mission,
either with an airplane or satellite, it is possible to retrace a ground-
track while making measurements in (three) different orientations., This

determines the bias and states on-line, in which case the effects of bias

drift could be minimized,

The second scheme for distinguishing the gradient components from the
biases is via a dynamic model of the gradient components, A simplifica-
tion of a model to appear in a later chapter appears below, Again, letting
x denote the gradient components, a linear dynamic model of x would be

X = Fx + ™ where w is a random process, Since b = 0, there is again

a mechanism for distinguishing x and b, Adjoining b to x

X (TR, S ) |k
S SR SR e (R "
1
b (o5 Ty 0
FV r"
X
z = H|=-]+vVv
b
'}
E(vw ) = R
X
E(ww ) = Q,

T ~1 :
I = =IF' - F'TI + HR H - IF'Q"'PI ¥ (26)




As betore, even though IlTR'H in (26) is not invertible for use in the
estimate update cquation, the sum of the terms on the right-hand side of
(26) is, and so ceventually, {1t will be possible to distinguish x  from
b, More on the use of a model of the earth gravity field with applica-

tionw to inftial navigation will appear latoer,




Chapter IV

GEODESY

Several experiments have emerged which have the capability of very
accurately measuring the gravitational field of the carth, These geodesy
experiments which measure the higher harmonics of the carth include (1)
high=low and low-low satellite-to-satellite (S=8) tracking; (2) counter—
orbiting (C,0) drag—tfree satellites;  (3) altimeter measurements {rom

orbit (1) orbiting gravity pradiometor measurcement s (D) others,

The purposce of this chapter is to determine the accuracy to which the
higher harmonites of the carth's pravity ficld could be deduced with an
orbiting gravity gradiometer, and to compare these results with some of

the previously meat ioned experiments,

The starting point is to expand the earth's gravity field in a series
of tesseral harmonics,  Recall from (1) the usual representation of

the perturbation potential as

{

= x { u R )
: ~El.2) T s
Ve, §,\) E z: . (l' l‘rm(sln [ C (m €O m\ £
3 =2 m=0 (27)
: sin m\] .
(m

i It is possible to deduce analytic expressions for all the pradient compo-
3 nents . but for simplicity and since 1t will later be assumed that only
T 1S measured, an expresston for [0 will suftice herve, (Actually
9

e
there are six preces of antormat fon available,)

w (‘ ”D R!\ ( .
. ( @) =
[.rl' E (Ca) (4 2) % (r‘- P(’m(s‘“ @) (€ cos m\
: {2 mo r e (28)
_x sin m\] .,
{m
b , —20-




An important point to be noted in (28) is that although the entire

gravity gradient tensor at a point cannot be reconstructed with just
rrr’ it is possible to deduce values for all the tesseral harmonic co-—

efficients with just Frr (or in fact, with any single tensor component),

=
rr
coefficients (with white noise v added) and so the whole theory of

In fact, the measurement z (r, ¢, \) 4+ v 1is linear in the harmonic

linear least-squares estimation theory can be applied, ILetting the state

vector X contain all tesseral harmonic coefficients,

z Hx + v (29)
where
—~ —
‘ ‘ Ha R@ L _
((+1)((+2) A P (sin @)cos m\
{m
P
Hl
R@ ke
(f+1)(f+2)( - ——) P (sin ¢) sin mA
{m
Fola o
— —
X' [, 5., 8., 8
"g2! 29 32r 33
(‘33' 533' (‘4 3 S-IR' s ] *

T
and successive rows of  H are formed with increasing values of ({ and m,
For satellite coverage of sufficiently large portions of the earth, the

information matrix (inverse of the covariance matrix) can be approximated

as

H (r,, ) 1 ()
4 K 4 ’
Iij : E (30)

K R

since R is a scalar; (30) makes use of the fact that the satellite is in

a polar orbit, and hence, latitude coverage is continuous, while longitude

coverage is discrete,
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L

different m decouple and the only remaining problem is
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t
r

where T is the correlation time of the measurement noise in units of

radians of orbit, Rewriting (32), we have

2 (0 (. 2n
" R DS m\ _
(Le1) (Le2) (L1 01) (L1 2) _."‘?)(_'.'.‘) A 2 lg P, (sin®)P,, (sing)cosy dy
l” - 3 sin m\‘, Lm e A
g 2RT r r 0 (33)
Unless { = {' the integral in (33) 1s zero. When { = {', the value
of the integral is
2
_ 60m)
| S0 I_lJ is diagonal and the elements are
2(
2 2 R
" WD) (142) (“_@j(_@) I %)
kk 3 2 ’
2RT 3 -
T r (2 60m)

2 2
where the average value of sin and cos is taken to be %, The




information matrix for the c and S has diagonal elements

{m {m
2¢

R
2 2 4 _Jg) # orbits 1 2
(41) (142} o ( r w  2RT 2 -6 _

where W
2
s - (3)

wl

- ey :
This gives the v%ariunce for a particular C or of

2

6= = 2 7RT (r_) 1
tm R 2 ’
A # orbits \'@/ n"(1+1)(1+2)
Again, using Kaula's rule of thumb,
3 = 14.14 X 10_6 .
{m 2
{
So,
(= {
‘BT () 1 10°
- T Vyorvits \R /| 2 X14,14 *
{m
Now
2
n = 3000 E
‘E - 10 sec =~ 0,0116 rad
R 0.1 E

~

# orbit - 3 months = 1200 orbits,

(35)

(36)

(37)

Figure 4 shows a comparison of various three-month geodesy missions,

including the current knowledge, counter orbiting satellites (C0:);

gravity gradiometers (G,G.) at different altitudes, and satellite-to-

satellite (S-£) tracking.
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Due to the fact that the gradiometer yields a derivative measurement,
it tends to amplify the high frequency components of the earth's gravity
field, This is evident in Fig. 4, The gradiometer outperforms the var—

ious other experiments in the high harmonic range,
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Chapter V

RALMAN FILTERING FOR GRAVITY GRADIOMETER AUGMENT ING
INERTIAL NAVIGATION SYSTEMS

A, INTRODUCTION

Inertial navigation is based on the simple principle that position
is given by the double integration of acceleration, Accelerometers do
not measure accelerations themselves but measure specific forces which
are defined as all forces acting per unit mass with the exception of the
gravity force, Hence, in order to obtain true accelerations, the specific
| force due to the gravity must be subtracted from the outputs of the accel-

erometers, in other words, the gravity acceleration must be added:

* ¥ = f+E (38)
where
& = acceleration of the vehicle
£ = specific force g
: E = gravity acceleration of the earth,

‘ Current inertial navigation systems use a 'reference ellipsoid

E model" to compute the gravity acceleration of the earth, given the vehicle
[ position, Although the reference ellipsoid model can well approximate

| the real gravity field of the earth, the difference is becoming a major
error source of inertial navigation systems because of rapid hardware

technology advances with accelerometers and gyroscopes [11],

The difference between the actual gravity and the reference ellip-
soid model may be expressed in terms of gravity anomaly (magnitude)

and deflections of the vertical (angular deviation), 127,

-31-




From measurements taken at 12.5 nm intervals across the 35th parallel

in the United States, the standard deviation and the correlation distance
of the vertical deflection were detcermined as 5.2 arcseconds and 25.1 nmi,
respectively tGelb, A.1974]). The worldwide vertical deflection ensemble

is considered to have 8 arcsecond rms and 20 n mi correlation distance [13].

Compensation for the errors causcd by the gravity deflection and anom-
aly is one of the principal applications of gravity gradiometers currently
under development. Gravity gradiometers measure gravity gradients which

are related to gravity acceleration by the following relation:

7
i
=
<

(39)

o
~-

where

et
]

gravity gradient tensor of the earth

<l
I

velocity of the vehicle.

Given the gravity gradients with the velocity and the initial valucs
of the gravity, we can integrate (39) to obtain the gravity. However, as
is well known, bias errors of the gravity gradiometers may produce unbounded
position errors as time increases. This fact is easily seen by the follow-
ing simple example illustrated in Fig. 5. Assuming that only error source
is the bias of the gradiometer, the linearized error propagation equation

for a single horizontal channel with constant speed may be given by

AX = Av (40a)
AV = g (40b)
ag. =vAl  + T Av (100)
X XX XX
where
AX . Av and Agx = estimation errors of position, velocity and
gravily disturbance, respectively
b = Al = bias error of the gradiometer,

XX




(a) Schematic
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(b) Block Diagram

FIG, & A SINGLE HORIZONTAL INERTIAL NAVIGATION SYSTEM WITH
A GRAVITY GRADIOMETER,




For the spherical earth, the value of I'x is constant and equal to
X

= -1400 E, where R is the radius of the earth, Substituting -

=l
AP —
ne
nN
—

F“, we can integrate (40) to yield

v

clo

t + .S cus(ust + ) (41a)

S

L

A

1]
ol

P

<
T

Av = + A sin(uqt + ) (41b)

£
w N

Ag. = Aw_ cos(w t + Q) (41¢)
X s s

where v and O are constants determined by

vb 5 e A :
— + A sin @ = Avn = initial velocity error
Wy
Avw cos ¢ = ag = initial gravity error,
s ( LxQ g A

Equation (41la) indicates that the position error due to the bias of the

gradiometer becomes unbounded with increasing time.

In order to overcome this difficulty, Heller [13] proposed a method of
using gravity gradiometer as an external aid combined with a gravity deflec-
tion model. He obtained a number of numerical results for a single horizon-
tal channel, assuming velocity reference errors, accelerometer errors, and

gradiometer errors,

In the following sections, we try to obtain an analytical solution for
Heller's mechanization, considering the gradiometer error as the only errvor
source. Then, we extend his mechanization to estimate the bias error of the
gradiometer (the bias error in this case means the difference of the means

of the outputs of the gradiometer from the gravity deflection model).

B.  SOLUTION FOR A SINGLE HORIZONTAL CHANNEL

Th mechanization considered here is the same as "Gradiometer-as-an-

external aid" (GAFA) in Heller [Y3], see Fig., 6. The gravity obtained

-34-
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by the reference ellipsoid is used for navigation computation. External

velocity information is provided in feedback form in order to damp the
Schuler oscillation. Gradiometer measurements are combined with a gravity
deflection model to estimate the navigation c¢rrors via use of a Kalman fil-

ter. The vehicle speed is assumed to be constant.

Among various statistical gravity deflection models [Ref. i3], we
choose the second order Markov model which is suitable for Kalman filter
implementation because the governing equations may be written in the form

of linear differential ecquations given by

e

g8 = -Pgt + Pgt’
(42)
gt' = -Pgt' + PW,
where
£ = vertical deflection
' = augmented state
3 = Markov parameter
! wF = zero mean white noise with power spectral density qE.
| A €
B and q, are given by
i :
3
B = 2,146v
D
| L 2.9 (43)
18" Erms
9% =P

wh're D and :rmq are the correlation distance and rms of the vertical

deilection respectively.

In this section, we consider that the gradiometer error is described

by a zero mean white noise. Then the measurement equation may be approxi-

mated by

2avil = (F ) _.) = gé + vV
XX XX o

(440)

1]

_‘Bgi + Bgt' + v\'g




where

r = output of gradiometer
XX

CR) =T computed by using the reference ellipsoid model
xXx RE XX

Vg = zero mean white noise of the gradiometer with power spectral

densit ..
sity -

VK is given by

2
V. =TArl (44b)
8 g

where

T = averaging time
A = rms of gradiometer error,
£

For simplicity, and to make clear the effect of the gravity deflection, we

assume that the only position error source is due to gravity deflection.

Then, the error propagation equation for a single horizontal channel may

be written as

%

Av

9 (45)
Av = W AX - ZCwSAv + g
where

r = external velocity damping coefficient

ws é % = Schuler angular frequency.

As is clearly seen, the gravity deflection, &, and its augmented state &

are observable by the gradiometer measurement, but the navigation errors in

position (Ax) and velocity (Av) are not observable. Hence, we can con-

struct Kalman filter for ¢ and £' and have the best estimates ¢ and

g' given by

.
~

gé = -Bgt +gt' + K (2 + vBef - vBg )

(46)

gite -Pgt' + Ko (2 + vBet - vBgt")




where KF and KF' are Kalman filter gains,

Now, the estimation ervror in gravity disturbance,

RE-gL', drives

the orror cquation (45), rather than the full gravity disturbance, gf.

The Kalman filter for the gravity deflection and its augmented state

may be found as follows. First, the transfer function

from the process

noise wF to the measurcement 7z may be found as
‘.|
- ‘{‘g
e U (70 i 17
w p
£ (s + 13)
Then, the symmetrice voot characteristic cquat ton may be written by
2 q 2
Bos £ (-1¥'s)
1 4 oo = =0 (18a)
(s + B)° vV (-5 + 1)
138
or
X
5 2 (-5)
1 4 b — (2R) — = 0 (18Dh)
s + 17 (-5 + 1)
where %
¥ A s ‘l
§ = [-‘\ CIRC) |
A, RE
N _[5 _rl.t rms - 18d)
1 T v T (A8d
" 8
The symmetrvice root locus with parametov o may be readily drawn as shown

in Fig, 7. In this case, we can solve the characteristic equations (A8)

and obtain the roots

we also find the steady-state Kalman filter gains given

~ 38

19)

by
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29
KE' = 2( l+4a” - l) o

The covariance of the estimation error of the gravity deflection P, is

given by

As the accuracy of the gradiometer improves (M 50 or a —» «), the

A * = 53 a
cerror covariance P decreases monotonically (Fig. 8). For example,

for
= 8 arcsec, D =20 nmi, and v = 100 knots 6 we have from (43)
rms
-1
B =10.73 (hr )
2. =3
g, = 2.91 (h.mi hr )} .

For T = 10 seec, Al'g = 1 51085 we have from (44b)
-7 -3
\Y = 4,67 X 10 (hr ).
Hence, from (48d) and (51), we have

a = 134

p‘t ~ .0148,

The rms of the estimation error in the vertical deflection decreases to

about one tenth of that without the gradiometer, However, as a s

onc characteristic root approaches the origin and the other approaches

infinity. This fact indicates that the gravity deflection is obtained by

integration of the measurement, ignoring the gravity deflection model.

-
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Substituting the estimation error of the gravity deflection ¢-¢ for
f in (45b) and conducting tedious calculation, we have expressions for

the covariance of errors in position (Px‘) and velocity (pvv) given by

JE—— 3 g et 2 4
P 2(/1+a"-1) (’“W 4 4t 1ea® oxT44r (148° wx + J1+a§) O
p* a XX S S » S 0
XX P )
XX 2 3 2 .2
- 4 w* 4t ox + ok
0 a ([ms + wy + rts + 1L (52a)
JEee—————— p
‘ a“~- w* A A4 -
b va 2(J/1+a%=1) (t 2 4 l+a" ) a8 (52b)
P P ) 2
wo Py a“(twr + 1) O
0 S
where
(P_) A AT e : .
XX 0 - covariances of errors in position and velocity, without
® ) gradiometer measurement
vv 0
4 3 2
& = o+ at v wr” + (Ar” 4482 42)0° 4+ ar iaa® wor 41
2 2
A‘* = (WX 4+ 2tw* + 1)
] s s
A“ .
wy W B .

Among numerical examples shown in Figs. 9, the case with the vehicle veloc-

ity 1000 knots is particularly interesting because when the root mean squarc
values of the gravity gradiometer error are around 10 E, the covariances of

position and velocity errors become larger than those without gradiometers.

This fact suggests studying the power spectral density of the estimation

error of the gravity deflection which is given by

SD) ~ o 2
(PSIEJQE _ 2yl +;|2 ( Lga = l) 1

0, = e - TRES (53)

-492<

T NS




A
1.2 fe
b0 fe
0.8 f=
0.6 |
0,1 }e
1000 knots
¢ =10.3
4.8 & e 8 arcsec
D 20 n.mi
T 10 sec
0 1 1 1 e
0.1 1 10 100

A (E)
B

FIG, 9a NORMALIZED RMS VALUES OF ESTIMATION ERRORS IN POSITION,
VELOCITY, AND VERTICAL DEFLECTION,
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Examining (53) and Fig. 10a we find that near zero frequency the power spec-

tral density of the e¢stimation error of the gravity deflection is always
larger (up to a factor of 2) than Q- This means that even if the Kalman
filter gives a smaller covariance usyshown in Fig. 8, it does not give im-
proved information near zero frequency, but worse, Hence, when the power
spectral density of the gravity deflection error at Schuler frequency is
larger than s the covariances of position and velocity errors are larg-

er with gradiometers than without,

C. BIAS ESTIMATE

In this scction, we make an attempt to extend Heller's mechanization
to estimate the bias error of the gradiometer, introducing the bias as an
augmented state in the Kalman filter discussed in the previous section.
The bias error in this case means the difference between the means of the

outputs of the gradiometers and the gravity deflection model.

The measurement cquation (44) may be rewritten as
2 = - Pgt + PgE'+ Vb + vVg (54)

where b is the bias error of the gradiometer and the additional state

equation is simply
b =0 (55)

The full system consists of equations (42), (54) and (55). Direct appli-
cation of the Kalman filter theory to this problem fails, however., Since
the bias is an undisturbable ad neutrally stable mode, the Kalman filter
gain associated with this mode becomes zero after the initial uncertaintly
disappears, This is o typical example of Kalman filter divergence. Many

cures have been proposed for this difficulty such as restarting, minimum

-46-




NOILOT1d4ad "TVOILYAA 40 HOUWHT NOILVWILST 40 ALISNAG "IVALOAdS d4M0d

(. 99s pea) m

201

‘D14

0 T mai wlg
| |
-4 1°0
1
i
3
HA1IKW0o1avdo a4 01 = dV
INOHLI M =
b
asd
J95 00 = & 01
T “u 9g = d
sua
039s0aE 8 = : 02
sa0uy 00T = A



NOILOJTAAA TVOILYdA 40

*(UOTIBZITIGRISa( 1BPOK)

dOUdd NOTLVWILSA A0 ALISNAU 'TVHLOAdS dIMOd q01 914
(. 29s pea)m
- OR¢ 01 o1
leoﬁ T mln: - c- 90—
DL T I |
nommvm|o~ 1 = -11°0

YALINOIAYYD
INOHLIM

O |

23s 01

1
=

w ‘u 0g = d

sua
03s0JE § = ]

siouy 00T = A

-48~




variance observers with eigenvalue constraints, added noise, pole-shifting
and destabilization which are discusscd in Bryson [14]. Here, we use

the modal destabilization method which is based on the fact that the steady-
state Kalman filter for a system with an (undisturbed) unstable mode is
stable., As the amount of destabilization increases, the absolute value of
the ecigenvalue associated with the undisturbed model increases from zero.
However, the covariance of the estimation errors increases too. Some num-
erical results are shown in Fig. 8 and Table 1. The power spectral density
of the estimation error of the gravity deflection was computed numerically
and shown in Fig. 10b, Although there is still a hump higher than the orig-

inal value the power spectral density oi

QE,

~49-
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Chapter VI

ESTIMATION OF DISTRIBUTED MASS DENSITY

We have been trying a completely different way of processing gradio-
meter measurement from that discussed in the previous chapter. Instead
of equation (39), we use the gradiometer measurement to estimate the mass
density distribution of the earth, then compute the gravity from the den-
sity distribution. This approach not only brings up a very interesting
problem, i.e., filtering of a distributed system, but also seems to have the
following practical advantages:

(1) The bias of the gradiometer does not cause an unbounded position
error but, at most, excites the Schuler oscillation. This is
because both the gravity and the gravity gradients are obtained
by spatial integration of the mass density and time-integration
of the gradiometer measurement is not needed.

(b) Since the statistical model of the mass density distribution is
needed only at the boundary, the effect of the model error is
small. Furthermore, there is little difficulty in extending this

approach to the actual inhomogeneous earth density field.

On the other hand, obviously this method requires large computer
capacity. However, since the correlation distance of the gravity deflec-
tion is about twenty nautical miles, we do not have to estimate the den-
sity distribution over large areas for inertial navigation purposes. This

fact may relax the requircment of the computer capacity.

So far, we have derived the partial differential equation for the
density distribution and obtained the filtering algorithm, including dis-

tributed Kalman filter gain. Numerical calculation is in progress.




Chapter VII

CONCLUSTIONS AND RECOMMENDATIONS FOR FURTHER STUDY

Scveral gravity models, including

1) tesseral harmonic models
2 point mass and line mass models

3)  second order random process models

have been studied.  As a result of the fact that inertial navigators arce

particularly sensitive to what happens locally, it could be proved rigor-
ously that tle tesseral harmonic model probably could never be implemented
due to the large number of parameters needed to obtain a suitably accurate

local gravity description.

The sccond order random process model was studied in detail, We ob-
tained an analytical solution for Heller's mechanization (GAEA), using a
more simplified problem formulation which still retains the part essential
for gradiometer study. The solution shows that the covariances of the
crrors in position and velocity are larger than those without gradiometer
when Schuler frequency falls within the bandwidth of the estimation error

in the vertical deflection,

We extended Heller's Kalman filter to estimate the bias cerror of the
gradiometer, using the modal destabilization method to avoid Kalman filter

divergonce.

Point mass and line mass models still should be considered, duce to
the simplicity with which they could be implemented.  Future work will

contain numerical results based on these modeias,

Recently, another method of obtaining gravity perturbations has come
under consideration, the estimation of distributed mass density., At this
point, the necessary analytical work has been completed, and future work

will include numerical results,

The problem of bias estimation of the gravity gradiometer has now

been studied in some detail. After sceveral schemes were considered, the
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most favorable methods to emerge are

1) If possible, retrace a given groundtrack with the gradiometer
in three different orientations.

2) Calibrate the gravity gradiometer bias at a fixed location in
many different orientations to obtain the bias accurately before

the instrument is used as a system component.

Finally, the results of using a gravity gradiometer to perform a
geodesy mission accurately are compared with competing schemes, A low
orbiting gradiometer appears to be the most effective way of obtaining
the tesseral harmonics of the earth for order 40 and above, i.e., the high
frequency components. In the range below the 40th harmonic, the geodesy

mission employing counter-orbiting drag free satellites is superior.
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